
Data Warehouse Service

Hybrid Data Warehouse

Issue 07

Date 2024-11-04

HUAWEI CLOUD COMPUTING TECHNOLOGIES CO., LTD.

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2024. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Cloud Computing Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are the property of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei
Cloud and the customer. All or part of the products, services and features described in this document may
not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all
statements, information, and recommendations in this document are provided "AS IS" without
warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Huawei Cloud Computing Technologies Co., Ltd.
Address: Huawei Cloud Data Center Jiaoxinggong Road

Qianzhong Avenue
Gui'an New District
Gui Zhou 550029
People's Republic of China

Website: https://www.huaweicloud.com/intl/en-us/

Issue 07 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

https://www.huaweicloud.com/intl/en-us/

Contents

1 Introduction to Hybrid Data Warehouse... 1

2 Support and Constraints.. 6

3 Hybrid Data Warehouse Syntax... 8
3.1 CREATE TABLE.. 8
3.2 INSERT.. 12
3.3 DELETE..13
3.4 UPDATE.. 14
3.5 UPSERT... 16
3.6 MERGE INTO.. 17
3.7 SELECT.. 19
3.8 ALTER TABLE... 21

4 Hybrid Data Warehouse Functions... 23

5 Hybrid Data Warehouse GUC Parameters...24

Data Warehouse Service
Hybrid Data Warehouse Contents

Issue 07 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. ii

1 Introduction to Hybrid Data Warehouse

A hybrid data warehouse needs to work with data sources, such as upstream
databases or applications, to insert, upsert, and update data in real time. The data
warehouse should also be able to query data shortly after it was imported.

Currently, the existing row-store and column-store tables in a conventional
GaussDB(DWS) data warehouse cannot meet real-time data import and query
requirements. Row-store tables have strong real-time import capabilities and
support highly concurrent updates, but their disk usage is high and query
efficiency is low. Column-store tables have high data compression ratio and good
OLAP query performance, but do not support concurrent updates. Concurrent
import will cause severe lock conflicts.

To solve these problems, we use column storage to reduce the disk usage, support
highly concurrency updates, and improve query speed. GaussDB(DWS) hybrid data
warehouses use HStore tables to achieve high performance during real-time data
import and query, and have the transaction processing capabilities required for
traditional OLTP scenarios.

The HStore tables uniquely support single and small-batch real-time IUD
operations, as well as regular large-batch import. Data can be queried
immediately after being imported. You can deduplicate traditional indexes (such
as primary keys) and accelerate point queries. You can further accelerate OLAP
queries through partitioning, multi-dimensional dictionaries, and partial sorting.
Strong data consistency can be ensured for transactions with heavy workloads,
such as TPC-C.

NO TE

● Only clusters 8.2.0.100 and later support the HStore tables of the hybrid data
warehouse.

● The hybrid data warehouse is used for both production and analysis. It is applicable to
hybrid transaction and analysis scenarios. It can be deployed in single-node or cluster
mode. For details about how to create a hybrid data warehouse, see Creating a
GaussDB(DWS) 2.0 Cluster.

● Hot and cold data management is supported for HStore tables. For details, see Hot and
Cold Data Management. This function is supported only by cluster versions 8.2.0.101
and later.

● HStore is a table type designed for the hybrid data warehouse and is irrelevant to the
SQL parameter hstore.

Data Warehouse Service
Hybrid Data Warehouse 1 Introduction to Hybrid Data Warehouse

Issue 07 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1

https://support.huaweicloud.com/intl/en-us/mgtg-dws/dws_01_0019.html
https://support.huaweicloud.com/intl/en-us/mgtg-dws/dws_01_0019.html
https://support.huaweicloud.com/intl/en-us/devg-dws/dws_04_0996.html
https://support.huaweicloud.com/intl/en-us/devg-dws/dws_04_0996.html

Differences from Standard Data Warehouses
The hybrid data warehouse and standard data warehouse are two different types
of GaussDB(DWS) products and have different usages. For details, see Table 1-1.

Table 1-1 Comparison between hybrid and standard data warehouses

Type Standard Data Warehouse Hybrid Data Warehouse

Application
scenario

Converged data analysis using
OLAP. It is used in sectors such
as finance, government and
enterprise, e-commerce, and
energy.

Real-time data import +
Hybrid analysis. Real-time
upstream data import + Real-
time query after data import.
It is mainly used in scenarios
that have high requirements
on real-time data import, such
as e-commerce and finance.

Advantage It is cost-effective and widely
used.
Cost effective, both hot and
cold data analysis supported,
elastic storage and compute
capacities.

Hybrid load, high data import
performance.
It achieves high query
efficiency and high data
compression ratio that are
equivalent to those of column
storage. It can also process
transactions in traditional
OLTP scenarios.

Features Excellent performance in
interactive analysis and offline
processing of massive data, as
well as complex data mining.

It supports highly concurrent
update operations on massive
amounts of data and can
achieve high query efficiency.
It achieves high performance
when processing a large
amount of data in scenarios
like high-concurrency import
and latency-sensitive queries.

SQL syntax Highly compatible with SQL
syntax

Compatible with column-store
syntax

GUC
parameter

You can configure a wide
variety of GUC parameters to
tailor your data warehouse
environment.

It is compatible with standard
data warehouse GUC
parameters and supports
hybrid data warehouse tuning
parameters.

Technical Highlights
● Transaction consistency

Data can be retrieved for queries immediately after being inserted or updated.
After concurrent updates, data is strongly consistent, and there will not be
incorrect results caused by wrong update sequence.

Data Warehouse Service
Hybrid Data Warehouse 1 Introduction to Hybrid Data Warehouse

Issue 07 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2

● High query performance
In complex OLAP queries, such as multi-table correlation, the data warehouse
achieves high performance through comprehensive distributed query plans
and distributed executors. It also supports complex subqueries and stored
procedures.

● Quick import
There will not be lock conflicts on column-store CUs. High-concurrency
update and import operations are supported. The concurrent update
performance can be over 100 times higher than before in general scenarios.

● High compression
Column storage can achieve a high compression ratio. Data is stored in the
column-store primary table through MERGE can be compressed to greatly
reduce disk usage and I/O.

● Query acceleration
You can deduplicate traditional indexes (such as primary keys) and accelerate
point queries. You can further accelerate OLAP queries through partitioning,
multi-dimensional dictionaries, and partial sorting.

Comparison Between Row-store, Column-store, and HStore Tables

Table 1-2 Comparison between row-store, column-store, and HStore tables

Table Type Row-Store Column-Store HStore

Data storage
mode

The attributes of
a tuple are stored
nearby.

The values of an
attribute are stored
nearby in the unit of
CU.

Data is stored in the
column-store primary
tables as CUs.
Updated columns
and data inserted in
small batches is
serialized and then
stored in a newly
designed delta table.

Data write Row-store
compression has
not been put into
commercial use.
Data is stored as
it is, occupying a
large amount of
disk space.

In row storage, data
with the same
attribute value types
is easy to compress.
Data write
consumes much
fewer I/O resources
and less disk space.

Data inserted in
batches is directly
written to CUs, which
are as easy to
compress as column
storage.
Updated columns
and data inserted in
small batches are
serialized and then
compressed. They will
also be periodically
merged to primary
table CUs.

Data Warehouse Service
Hybrid Data Warehouse 1 Introduction to Hybrid Data Warehouse

Issue 07 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 3

Table Type Row-Store Column-Store HStore

Data update Data is updated
by row, avoiding
CU lock conflicts.
The performance
of concurrent
updates
(UPDATE/
UPSERT/DELETE)
is high.

The entire CU needs
to be locked even if
only one record in it
is updated.
Generally,
concurrent updates
(UPDATE/UPSERT/
DELETE) are not
supported.

CU lock conflicts can
be avoided. The
performance of
concurrent updates
(UPDATE/UPSERT/
DELETE) is higher
than 60% of the row-
store update
performance.

Data read Data is read by
row. An entire
row needs to be
retrieved even if
only one column
in it needs to be
accessed. The
query
performance is
low.

When data is read
by column, only the
CU of a column
needs to be
accessed. CUs can
be easily
compressed,
occupying less I/O
resources, and
achieve high read
performance.

Data in a column-
store primary table is
read by column.
Updated columns
and data inserted in
small batches are
deserialized and then
retrieved. After data
is merged to the
primary table, the
data can be read as
easily as that in
column storage.

Advantage The concurrent
update
performance is
high.

The query
performance is high,
and the disk space
usage is small.

The concurrent
update performance
is high. After data
merge, the query and
compression
performance are the
same as those of
column storage.

Disadvantag
e

A large amount
of disk space is
occupied, and the
query
performance is
low.

Generally,
concurrent updates
are not supported.

A background
permanent thread is
required to clear
unnecessary HStore
table data after
merge. Data is
merged to the
primary table CUs
and then cleared.
This operation is
irrelevant to the SQL
syntax MERGE.

Data Warehouse Service
Hybrid Data Warehouse 1 Introduction to Hybrid Data Warehouse

Issue 07 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 4

Table Type Row-Store Column-Store HStore

Application
scenario

1. OLTP
transactions
with frequent
update and
deletion
operations

2. Point queries
(simple
queries that
are based on
indexes and
return a small
amount of
data)

1. OLAP query and
analysis

2. A large volume of
data is imported,
and is rarely
updated or
deleted after the
import.

1. Data is
concurrently
imported to the
database in real
time.

2. High-concurrency
update and
import; and high-
performance
query

Data Warehouse Service
Hybrid Data Warehouse 1 Introduction to Hybrid Data Warehouse

Issue 07 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 5

2 Support and Constraints

A hybrid data warehouse is compatible with all column-store syntax.

Table 2-1 Supported syntax

Syntax Supported

CREATE TABLE Yes

CREATE TABLE LIKE Yes

DROP TABLE Yes

INSERT Yes

COPY Yes

SELECT Yes

TRUNCATE Yes

EXPLAIN Yes

ANALYZE Yes

VACUUM Yes

ALTER TABLE DROP PARTITION Yes

ALTER TABLE ADD PARTITION Yes

ALTER TABLE SET WITH OPTION Yes

ALTER TABLE DROP COLUMN Yes

ALTER TABLE ADD COLUMN Yes

ALTER TABLE ADD NODELIST Yes

ALTER TABLE CHANGE OWNER Yes

ALTER TABLE RENAME COLUMN Yes

ALTER TABLE TRUNCATE PARTITION Yes

Data Warehouse Service
Hybrid Data Warehouse 2 Support and Constraints

Issue 07 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 6

Syntax Supported

CREATE INDEX Yes

DROP INDEX Yes

DELETE Yes

Other ALTER TABLE syntax Yes

ALTER INDEX Yes

MERGE Yes

SELECT INTO Yes

UPDATE Yes

CREATE TABLE AS Yes

Constraints
1. To use HStore tables, use the following parameter settings, or the

performance of HStore tables will deteriorate significantly:
autovacuum_max_workers_hstore=3, autovacuum_max_workers=6, and
autovacuum=true

2. Currently, HStore and column storage do not support the use of VACUUM to
clear dirty index data, and frequent updates may cause index bloat. This
function will be supported in later versions.

Data Warehouse Service
Hybrid Data Warehouse 2 Support and Constraints

Issue 07 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 7

3 Hybrid Data Warehouse Syntax

3.1 CREATE TABLE

Function
Create an HStore table in the current database. The table will be owned by the
user who created it.

In a hybrid data warehouse, you can use DDL statements to create HStore tables.
To create an HStore table, set enable_hstore to true and set orientation to
column.

Precautions
● To create an HStore table, you must have the USAGE permission on schema

cstore.
● The table-level parameters enable_delta and enable_hstore cannot be

enabled at the same time. The parameter enable_delta is used to enable
delta for common column-store tables and conflicts with enable_hstore.

● Each HStore table is bound to a delta table. The OID of the delta table is
recorded in the reldeltaidx field in pg_class. (The reldelta field is used by the
delta table of the column-store table).

Syntax
CREATE TABLE [IF NOT EXISTS] table_name
({ column_name data_type
 | LIKE source_table [like_option [...]] }
}
 [, ...])
[WITH ({storage_parameter = value} [, ...])]
[TABLESPACE tablespace_name]
[DISTRIBUTE BY HASH (column_name [,...])]
[TO { GROUP groupname | NODE (nodename [, ...]) }]
[PARTITION BY {
 {RANGE (partition_key) (partition_less_than_item [, ...])}
 } [{ ENABLE | DISABLE } ROW MOVEMENT]];
The options for LIKE are as follows:
{ INCLUDING | EXCLUDING } { DEFAULTS | CONSTRAINTS | INDEXES | STORAGE | COMMENTS | PARTITION
| RELOPTIONS | DISTRIBUTION | ALL }

Data Warehouse Service
Hybrid Data Warehouse 3 Hybrid Data Warehouse Syntax

Issue 07 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 8

Differences Between Delta Tables

Table 3-1 Differences between the delta tables of HStore and column-store tables

Type Column-Store Delta Table HStore Delta Table

Table structure Same as that defined for the
column-store primary table.

Different from that
defined for the primary
table.

Function Used to temporarily store a
small batch of inserted data.
After the data size reaches the
threshold, the data will be
merged to the primary table. In
this way, data will not be
directly inserted to the primary
table or generate a large
number of small CUs.

Persistently stores
UPDATE, DELETE, and
INSERT information. It is
used to restore the
memory structure that
manages concurrent
updates, such as the
memory update chain, in
the case of a fault.

Weakness If data is not merged in a timely
manner, the delta table will
grow large and affect query
performance. In addition, the
table cannot solve lock conflicts
during concurrent updates.

The merge operation
depends on the
background
AUTOVACUUM.

Parameters
● IF NOT EXISTS

If IF NOT EXISTS is specified, a table will be created if there is no table using
the specified name. If there is already a table using the specified name, no
error will be reported. A message will be displayed indicating that the table
already exists, and the database will skip table creation.

● table_name
Specifies the name of the table to be created.
The table name can contain a maximum of 63 characters, including letters,
digits, underscores (_), dollar signs ($), and number signs (#). It must start
with a letter or underscore (_).

● column_name
Specifies the name of a column to be created in the new table.
The column name can contain a maximum of 63 characters, including letters,
digits, underscores (_), dollar signs ($), and number signs (#). It must start
with a letter or underscore (_).

● data_type
Specifies the data type of the column.

● LIKE source_table [like_option ...]
Specifies a table from which the new table automatically copies all column
names and their data types.

Data Warehouse Service
Hybrid Data Warehouse 3 Hybrid Data Warehouse Syntax

Issue 07 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 9

The new table and the original table are decoupled after creation is complete.
Changes to the original table will not be applied to the new table, and scans
on the original table will not be performed on the data of the new table.
Columns copied by LIKE are not merged with the same name. If the same
name is specified explicitly or in another LIKE clause, an error will be
reported.
HStore tables can be inherited only from HStore tables.

● WITH ({ storage_parameter = value } [, ...])
Specifies an optional storage parameter for a table.
– ORIENTATION

Specifies the storage mode (time series, row-store, or column-store) of
table data. This parameter cannot be modified once it is set. For HStore
tables, use the column storage mode and set enable_hstore to on.
Options:

▪ TIMESERIES indicates that the data is stored in time series.

▪ COLUMN indicates that the data is stored in columns.

▪ ROW indicates that table data is stored in rows.

Default value: ROW
– COMPRESSION

Specifies the compression level of the table data. It determines the
compression ratio and time. Generally, a higher compression level
indicates a higher compression ratio and a longer compression time, and
vice versa. The actual compression ratio depends on the distribution
characteristics of loading table data.
Options:

▪ The valid values for HStore tables and column-store tables are YES/
NO and LOW/MIDDLE/HIGH, and the default is LOW.

▪ The valid values for row-store tables are YES and NO, and the
default is NO.

– COMPRESSLEVEL
Specifies table data compression rate and duration at the same
compression level. This divides a compression level into sub-levels,
providing you with more choices for compression ratio and duration. As
the value becomes greater, the compression rate becomes higher and
duration longer at the same compression level. The parameter is only
valid for time series tables and column-store tables.
Value range: 0 to 3
Default value: 0

– MAX_BATCHROW
Specifies the maximum number of rows in a storage unit during data
loading. The parameter is only valid for time series tables and column-
store tables.
Value range: 10000 to 60000

Data Warehouse Service
Hybrid Data Warehouse 3 Hybrid Data Warehouse Syntax

Issue 07 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 10

Default value: 60000
– PARTIAL_CLUSTER_ROWS

Specifies the number of records to be partially clustered for storage
during data loading. The parameter is only valid for time series tables
and column-store tables.
Value range: 600000 to 2147483647

– enable_delta
Specifies whether to enable delta tables in column-store tables. This
parameter cannot be enabled for HStore tables.
Default value: off

– SUB_PARTITION_COUNT
Specifies the number of level-2 partitions. This parameter specifies the
number of level-2 partitions during data import. This parameter is
configured during table creation and cannot be modified after table
creation. You are not advised to set the default value, which may affect
the import and query performance.
Value range: 1 to 1024
Default value: 32

– DELTAROW_THRESHOLD
Specifies the maximum number of rows (SUB_PARTITION_COUNT x
DELTAROW_THRESHOLD) to be imported to the delta table.
Value range: 0 to 60000
Default value: 60000

– COLVERSION
Specifies the version of the storage format. HStore tables support only
version 2.0.
Options:
1.0: Each column in a column-store table is stored in a separate file. The
file name is relfilenode.C1.0, relfilenode.C2.0, relfilenode.C3.0, or
similar.
2.0: All columns of a column-store table are combined and stored in a
file. The file is named relfilenode.C1.0.
Default value: 2.0

– DISTRIBUTE BY
Specifies how the table is distributed or replicated between DNs.
Options:
HASH (column_name): Each row of the table will be placed into all the
DNs based on the hash value of the specified column.

– TO { GROUP groupname | NODE (nodename [, ...]) }
TO GROUP specifies the Node Group in which the table is created.
Currently, it cannot be used for HDFS tables. TO NODE is used for
internal scale-out tools.

– PARTITION BY
Specifies the initial partition of an HStore table.

Data Warehouse Service
Hybrid Data Warehouse 3 Hybrid Data Warehouse Syntax

Issue 07 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 11

Example
Create a simple HStore table.

CREATE TABLE warehouse_t1
(
 W_WAREHOUSE_SK INTEGER NOT NULL,
 W_WAREHOUSE_ID CHAR(16) NOT NULL,
 W_WAREHOUSE_NAME VARCHAR(20) ,
 W_WAREHOUSE_SQ_FT INTEGER ,
 W_STREET_NUMBER CHAR(10) ,
 W_STREET_NAME VARCHAR(60) ,
 W_STREET_TYPE CHAR(15) ,
 W_SUITE_NUMBER CHAR(10) ,
 W_CITY VARCHAR(60) ,
 W_COUNTY VARCHAR(30) ,
 W_STATE CHAR(2) ,
 W_ZIP CHAR(10) ,
 W_COUNTRY VARCHAR(20) ,
 W_GMT_OFFSET DECIMAL(5,2)
)WITH(ORIENTATION=COLUMN, ENABLE_HSTORE=ON);

CREATE TABLE warehouse_t2 (LIKE warehouse_t1 INCLUDING ALL);

3.2 INSERT

Function
Insert one or more rows of data into an HStore table.

Precautions
● If the data to be inserted at a time is greater than or equal to the value of the

table-level parameter DELTAROW_THRESHOLD, the data is directly inserted
into the primary table to generate a compression unit (CU).

● If the data to be inserted is smaller than DELTAROW_THRESHOLD, a record
of the type I will be inserted into the delta table. The data will be serialized
and stored in the values field of the record.

● CUIDs are allocated to the data in the delta table and the primary table in a
unified manner.

● The data inserted into the delta table depends on AUTOVACUUM to merge to
primary table CUs.

Syntax
INSERT [/*+ plan_hint */] [IGNORE | OVERWRITE] INTO table_name [AS alias] [(column_name [, ...])]
 { DEFAULT VALUES
 | VALUES {({ expression | DEFAULT } [, ...]) }[, ...] | query }

Parameters
● table_name

Specifies the name of the target table.
Value range: an existing table name

● AS
Specifies an alias for the target table table_name. alias indicates the alias
name.

Data Warehouse Service
Hybrid Data Warehouse 3 Hybrid Data Warehouse Syntax

Issue 07 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 12

● column_name

Specifies the name of a column in a table.

● query

Specifies a query statement (SELECT statement) that uses the query result as
the inserted data.

Example

Create the reason_t1 table.
-- Create the reason_t1 table.
CREATE TABLE reason_t1
(
 TABLE_SK INTEGER ,
 TABLE_ID VARCHAR(20) ,
 TABLE_NA VARCHAR(20)
)WITH(ORIENTATION=COLUMN, ENABLE_HSTORE=ON);

Insert a record into a table.
INSERT INTO reason_t1(TABLE_SK, TABLE_ID, TABLE_NA) VALUES (1, 'S01', 'StudentA');

Insert records into the table.
INSERT INTO reason_t1 VALUES (1, 'S01', 'StudentA'),(2, 'T01', 'TeacherA'),(3, 'T02', 'TeacherB');
SELECT * FROM reason_t1 ORDER BY 1;
 TABLE_SK | TABLE_ID | TABLE_NAME
----------+----------+------------
 1 | S01 | StudentA
 2 | T01 | TeacherA
 3 | T02 | TeacherB
(3 rows)

3.3 DELETE

Function

Delete data from an HStore table.

Precautions
● To delete all the data from a table, you are advised to use the TRUNCATE

syntax to improve performance and reduce table bloating.

● If a single record is deleted from an HStore table, a record of the type D will
be inserted into the delta table. The memory update chain will also be
updated to manage concurrency.

● If multiple records are deleted from an HStore table at a time, a record of the
type D will be inserted for the consecutive deleted records in each CU.

● In concurrent deletion scenarios, operations on the same CU will get queued
in traditional column-store tables and result in low performance. For HStore
tables, the operations can be concurrently performed, and the deletion
performance can be more than 100 times that of column-store tables.

● The syntax is fully compatible with column storage. For more information, see
the UPDATE syntax.

Data Warehouse Service
Hybrid Data Warehouse 3 Hybrid Data Warehouse Syntax

Issue 07 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 13

Syntax
DELETE FROM [ONLY] table_name [*] [[AS] alias]
 [USING using_list]
 [WHERE condition]

Parameters
● ONLY

If ONLY is specified, only that table is deleted. If ONLY is not specified, this
table and all its sub-tables are deleted.

● table_name
Specifies the name (optionally schema-qualified) of a target table.
Value range: an existing table name

● alias
Specifies the alias for the target table.
Value range: a string. It must comply with the naming convention.

● using_list
Specifies the USING clause.

● condition
Specifies an expression that returns a value of type boolean. Only rows for
which this expression returns true will be deleted.

Example
Create the reason_t2 table.
CREATE TABLE reason_t2
(
 TABLE_SK INTEGER ,
 TABLE_ID VARCHAR(20) ,
 TABLE_NA VARCHAR(20)
)WITH(ORIENTATION=COLUMN, ENABLE_HSTORE=ON);
INSERT INTO reason_t2 VALUES (1, 'S01', 'StudentA'),(2, 'T01', 'TeacherA'),(3, 'T02', 'TeacherB');

Use the WHERE condition for deletion.
DELETE FROM reason_t2 WHERE TABLE_SK = 2;
DELETE FROM reason_t2 AS rt2 WHERE rt2.TABLE_SK = 2;

Use the IN syntax for deletion.
DELETE FROM reason_t2 WHERE TABLE_SK in (1,3);

3.4 UPDATE

Function
Update specified data in an HStore table.

Precautions
● Similar to column storage, the UPDATE operation on an HStore table in the

current version involves DELETE and INSERT. You can configure a global GUC
parameter to control the lightweight UPDATE of HStore. In the current
version, the lightweight UPDATE is disabled by default.

Data Warehouse Service
Hybrid Data Warehouse 3 Hybrid Data Warehouse Syntax

Issue 07 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 14

● In concurrent update scenarios, operations on the same CU will cause lock
conflicts in traditional column-store tables and result in low performance. For
HStore tables, the operations can be concurrently performed, and the update
performance can be more than 100 times that of column-store tables.

Syntax
UPDATE [/*+ plan_hint */] [ONLY] table_name [*] [[AS] alias]
SET {column_name = { expression | DEFAULT }
 |(column_name [, ...]) = {({ expression | DEFAULT } [, ...]) |sub_query }}[, ...]
 [FROM from_list] [WHERE condition];

Parameters
● plan_hint clause

Following the keyword in the /*+ */ format, hints are used to optimize the
plan generated by a specified statement block. For details, see Hint-based
Tuning.

● table_name
Name (optionally schema-qualified) of the table to be updated.
Value range: an existing table name

● alias
Specifies the alias for the target table.
Value range: a string. It must comply with the naming convention.

● expression
Specifies a value assigned to a column or an expression that assigns the value.

● DEFAULT
Sets the column to its default value.
The value is NULL if no specified default value has been assigned to it.

● from_list
A list of table expressions, allowing columns from other tables to appear in
the WHERE condition and the update expressions. This is similar to the list of
tables that can be specified in the FROM clause of a SELECT statement.

NO TICE

Note that the target table must not appear in the from_list, unless you intend
a self-join (in which case it must appear with an alias in the from_list).

● condition
An expression that returns a value of type boolean. Only rows for which this
expression returns true are updated.

Example
Create the reason_update table.
CREATE TABLE reason_update
(
 TABLE_SK INTEGER ,
 TABLE_ID VARCHAR(20) ,

Data Warehouse Service
Hybrid Data Warehouse 3 Hybrid Data Warehouse Syntax

Issue 07 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 15

https://support.huaweicloud.com/intl/en-us/performance-dws/dws_10_0021.html
https://support.huaweicloud.com/intl/en-us/performance-dws/dws_10_0021.html

 TABLE_NA VARCHAR(20)
)WITH(ORIENTATION=COLUMN, ENABLE_HSTORE=ON);

Insert data to the reason_update table.
INSERT INTO reason_update VALUES (1, 'S01', 'StudentA'),(2, 'T01', 'TeacherA'),(3, 'T02', 'TeacherB');

Perform the UPDATE operation on the reason_update table.
UPDATE reason_update SET TABLE_NA = 'TeacherD' where TABLE_SK = 3;

3.5 UPSERT

Function

HStore is compatible with the UPSERT syntax. You can add one or more rows to a
table. When a row duplicates an existing primary key or unique key value, the row
will be ignored or updated.

Precautions
● The UPSERT statement of updating data upon conflict can be executed only

when the target table contains a primary key or unique index.

● Similar to column storage, an update operation performed using UPSERT on
an HStore table in the current version involves DELETE and INSERT.

● In concurrent UPSERT scenarios, operations on the same CU will cause lock
conflicts in traditional column-store tables and result in low performance. For
HStore tables, the operations can be concurrently performed, and the upsert
performance can be more than 100 times that of column-store tables.

Syntax

Table 3-2 UPSERT syntax

Syntax Update Data Upon Conflict Ignore Data Upon Conflict

Syntax 1:
No index is
specified.

INSERT INTO ON DUPLICATE KEY UPDATE INSERT IGNORE
INSERT INTO ON CONFLICT DO
NOTHING

Syntax 2:
The unique
key
constraint
can be
inferred
from the
specified
column
name or
constraint
name.

INSERT INTO ON CONFLICT(...) DO UPDATE
SET
INSERT INTO ON CONFLICT ON
CONSTRAINT con_name DO UPDATE SET

INSERT INTO ON CONFLICT(...) DO
NOTHING
INSERT INTO ON CONFLICT ON
CONSTRAINT con_name DO NOTHING

Data Warehouse Service
Hybrid Data Warehouse 3 Hybrid Data Warehouse Syntax

Issue 07 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 16

Parameters

In syntax 1, no index is specified. The system checks for conflicts on all primary
keys or unique indexes. If a conflict exists, the system ignores or updates the
corresponding data.

In syntax 2, a specified index is used for conflict check. The primary key or unique
index is inferred from the column name, the expression that contains column
names, or the constraint name specified in the ON CONFLICT clause.

● Unique index inference
Syntax 2 infers the primary key or unique index by specifying the column
name or constraint name. You can specify a single column name or multiple
column names by using an expression. Example: column1, column2,
column3

● UPDATE clause
The UPDATE clause can use VALUES(colname) or EXCLUDED.colname to
reference inserted data. EXCLUDED indicates the rows that should be
excluded due to conflicts.

● WHERE clause
– The WHERE clause is used to determine whether a specified condition is

met when data conflict occurs. If yes, update the conflict data. Otherwise,
ignore it.

– Only syntax 2 of Update Data Upon Conflict can specify the WHERE
clause, that is, INSERT INTO ON CONFLICT(...) DO UPDATE SET
WHERE.

Example

Create table reason_upsert and insert data into it.
CREATE TABLE reason_upsert
(
 a int primary key,
 b int,
 c int
)WITH(ORIENTATION=COLUMN, ENABLE_HSTORE=ON);
INSERT INTO reason_upsert VALUES (1, 2, 3);

Ignore conflicting data.
INSERT INTO reason_upsert VALUES (1, 4, 5),(2, 6, 7) ON CONFLICT(a) DO NOTHING;

Update conflicting data.
INSERT INTO reason_upsert VALUES (1, 4, 5),(3, 8, 9) ON CONFLICT(a) DO UPDATE SET b = EXCLUDED.b,
c = EXCLUDED.c;

3.6 MERGE INTO

Function

The MERGE INTO statement is used to conditionally match data in a target table
with that in a source table. If data matches, UPDATE is executed on the target
table; if data does not match, INSERT is executed. You can use this syntax to run
UPDATE and INSERT at a time for convenience.

Data Warehouse Service
Hybrid Data Warehouse 3 Hybrid Data Warehouse Syntax

Issue 07 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 17

Precautions

In concurrent MERGE INTO scenarios, the update operations triggered on the
same CU will cause lock conflicts in traditional column-store tables and result in
low performance. For HStore tables, the operations can be concurrently
performed, and the MERGE INTO performance can be more than 100 times that
of column-store tables.

Syntax
MERGE INTO table_name [[AS] alias]
USING { { table_name | view_name } | subquery } [[AS] alias]
ON (condition)
[
 WHEN MATCHED THEN
 UPDATE SET { column_name = { expression | DEFAULT } |
 (column_name [, ...]) = ({ expression | DEFAULT } [, ...]) } [, ...]
 [WHERE condition]
]
[
 WHEN NOT MATCHED THEN
 INSERT { DEFAULT VALUES |
 [(column_name [, ...])] VALUES ({ expression | DEFAULT } [, ...]) [, ...] [WHERE condition] }
];

Parameters
● INTO clause

Specifies the target table that is being updated or has data being inserted.

– table_name

Specifies the name of the target table.

– alias

Specifies the alias for the target table.

Value range: a string. It must comply with the naming convention.

● USING clause

Specifies the source table, which can be a table, view, or subquery.

● ON clause

Specifies the condition used to match data between the source and target
tables. Columns in the condition cannot be updated. The ON association
condition can be ctid, xc_node_id, or tableoid.

● WHEN MATCHED clause

Performs UPDATE if data in the source table matches that in the target table
based on the condition.

NO TE

Distribution columns, system catalogs, and system columns cannot be updated.

● WHEN NOT MATCHED clause

Specifies that the INSERT operation is performed if data in the source table
does not match that in the target table based on the condition.

Data Warehouse Service
Hybrid Data Warehouse 3 Hybrid Data Warehouse Syntax

Issue 07 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 18

NO TE

● An INSERT clause can contain only one VALUES.
● The sequence of WHEN NOT MATCHED and WHEN NOT MATCHED clauses can

be exchanged. One of them can be omitted, but they cannot be omitted at the
same time.

● Two WHEN MATCHED or WHEN NOT MATCHED clauses cannot be specified at
the same time.

Example
Create a target for MERGE INTO.
CREATE TABLE target(a int, b int)WITH(ORIENTATION = COLUMN, ENABLE_HSTORE = ON);
INSERT INTO target VALUES(1, 1),(2, 2);

Create a data source table.
CREATE TABLE source(a int, b int)WITH(ORIENTATION = COLUMN, ENABLE_HSTORE = ON);
INSERT INTO source VALUES(1, 1),(2, 2),(3, 3),(4, 4),(5, 5);

Run the MERGE INTO command.
MERGE INTO target t
USING source s
ON (t.a = s.a)
WHEN MATCHED THEN
 UPDATE SET t.b = t.b + 1
WHEN NOT MATCHED THEN
 INSERT VALUES (s.a, s.b) WHERE s.b % 2 = 0;

3.7 SELECT

Function
Read data from an HStore table.

Precautions
● Currently, neither column-store tables and HStore tables support the SELECT

FOR UPDATE syntax.
● When a SELECT query is performed on an HStore table, the system will scan

the data in column-store primary table CUs, the delta table, and the update
information in each row in the memory. The three types of information will
be combined before returned.

● If data is queried based on the primary key index or unique index,
For traditional column-store tables, the unique index stores both the data
location information (blocknum, offset) of the row-store Delta table and the
data location information (cuid, offset) of the column-store primary table.
After the data is merged to the primary table, a new index tuple will be
inserted, and the index will keep bloating.
For HStore tables, global CUIDs are allocated in a unified manner. Therefore,
only cuid and offset are stored in index tuples. After data is merged, no new
index tuples will be generated.

Syntax
[WITH [RECURSIVE] with_query [, ...]]
SELECT [/*+ plan_hint */] [ALL | DISTINCT [ON (expression [, ...])]]

Data Warehouse Service
Hybrid Data Warehouse 3 Hybrid Data Warehouse Syntax

Issue 07 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 19

{ * | {expression [[AS] output_name]} [, ...] }
[FROM from_item [, ...]]
[WHERE condition]
[GROUP BY grouping_element [, ...]]
[HAVING condition [, ...]]
[{ UNION | INTERSECT | EXCEPT | MINUS } [ALL | DISTINCT] select]
[ORDER BY {expression [[ASC | DESC | USING operator] | nlssort_expression_clause] [NULLS { FIRST |
LAST }]} [, ...]]
[{ [LIMIT { count | ALL }] [OFFSET start [ROW | ROWS]] } | { LIMIT start, { count | ALL } }]

Parameters
● DISTINCT [ON (expression [, ...])]

Removes all duplicate rows from the SELECT result set.
ON (expression [, ...]) is only reserved for the first row among all the rows
with the same result calculated using given expressions.

● SELECT list
Indicates columns to be queried. Some or all columns (using wildcard
character *) can be queried.
You may use the AS output_name clause to give an alias for an output
column. The alias is used for the displaying of the output column.

● FROM clause
Indicates one or more source tables for SELECT.
The FROM clause can contain the following elements:

● WHERE clause
The WHERE clause forms an expression for row selection to narrow down the
query range of SELECT. The condition is any expression that evaluates to a
result of Boolean type. Rows that do not satisfy this condition will be
eliminated from the output.
In the WHERE clause, you can use the operator (+) to convert a table join to
an outer join. However, this method is not recommended because it is not the
standard SQL syntax and may raise syntax compatibility issues during
platform migration. There are many restrictions on using the operator (+):

● GROUP BY clause
Condenses query results into a single row all selected rows that share the
same values for the grouped expressions.

● HAVING clause
Selects special groups by working with the GROUP BY clause. The HAVING
clause compares some attributes of groups with a constant. Only groups that
matching the logical expression in the HAVING clause are extracted.

● ORDER BY clause
Sorts data retrieved by SELECT in descending or ascending order. If the
ORDER BY expression contains multiple columns:

Example
Create the reason_select table and insert data into the table.
CREATE TABLE reason_select
(
 r_reason_sk integer,
 r_reason_id integer,

Data Warehouse Service
Hybrid Data Warehouse 3 Hybrid Data Warehouse Syntax

Issue 07 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 20

 r_reason_desc character(100)
)WITH(ORIENTATION = COLUMN, ENABLE_HSTORE=ON);
INSERT INTO reason_select values(3, 1,'reason 1'),(10, 2,'reason 2'),(4, 3,'reason 3'),(10, 4,'reason 4');

Perform the GROUP BY operation.
SELECT COUNT(*), r_reason_sk FROM reason_select GROUP BY r_reason_sk;

Perform the HAVING filtering operation.
SELECT COUNT(*) c,r_reason_sk FROM reason_select GROUP BY r_reason_sk HAVING c > 1;

Perform the ORDER BY operation.
SELECT * FROM reason_select ORDER BY r_reason_sk;

3.8 ALTER TABLE

Function
Modify a table, including modifying the definition of a table, renaming a table,
renaming a specified column in a table, adding or updating multiple columns, and
changing a column-store table to an HStore table.

Precautions
● You can set enable_hstore by using ALTER to change a column-store table to

an HStore table, or to change it back. If enable_delta is set to on,
enable_hstore cannot be set to on.

● For some ALTER operations (such as modifying column types, merging
partitions, adding NOT NULL constraints, and adding primary key constraints),
HStore tables need to merge data to the primary table and then perform
ALTER, which may cause extra performance overhead. The impact on
performance depends on the data volume in the delta table.

● When you add a column, do not use ALTER to specify other operations (for
example, modifying the column type). An ALTER statement with only the
ADD COLUMN parameter can achieve high performance, because it does not
require FULL MERGE.

● The storage parameter ORIENTATION cannot be modified.

Modifying Table Attributes
Syntax:

ALTER TABLE [IF EXISTS] <table_name> SET ({ENABLE_HSTORE = ON} [, ...]);

To change a column-store table to an HStore table, run the following command:

CREATE TABLE alter_test(a int, b int) WITH(ORIENTATION = COLUMN);
ALTER TABLE alter_test SET (ENABLE_HSTORE = ON);

NO TICE

To use HStore tables, set the following parameters, or the HStore performance will
deteriorate severely. The recommended settings are as follows:
autovacuum_max_workers_hstore=3, autovacuum_max_workers=6,
autovacuum=true

Data Warehouse Service
Hybrid Data Warehouse 3 Hybrid Data Warehouse Syntax

Issue 07 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 21

Adding a Column
Syntax:

ALTER TABLE [IF EXISTS] <table_name> ADD COLUMN <new_column> <data_type> [DEFAULT
<default_value>];

Example:

Create the alter_test2 table and add a column to it.

CREATE TABLE alter_test2(a int, b int) WITH(ORIENTATION = COLUMN,ENABLE_HSTORE = ON);
ALTER TABLE alter_test ADD COLUMN c int;

NO TE

When adding a column, you are not advised to use ALTER to specify other operations in the
same SQL statement.

Renaming
Syntax:

ALTER TABLE [IF EXISTS] <table_name> RENAME TO <new_table_name>;

Example:

Create table alter_test3 and rename it as alter_new.

CREATE TABLE alter_test3(a int, b int) WITH(ORIENTATION = COLUMN,ENABLE_HSTORE = ON);
ALTER TABLE alter_test3 RENAME TO alter_new;

Data Warehouse Service
Hybrid Data Warehouse 3 Hybrid Data Warehouse Syntax

Issue 07 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 22

4 Hybrid Data Warehouse Functions

hstore_light_merge(rel_name text)
Description: This function is used to manually perform lightweight cleanup on
HStore tables and holds the level-3 lock of the target table.

Return type: int

Example:

SELECT hstore_light_merge('reason_select');

hstore_full_merge(rel_name text)
Description: This function is used to manually perform full cleanup on HStore
tables.

Return type: int

NO TICE

● This operation forcibly merges all the visible operations of the delta table to the
primary table, and then creates an empty delta table. During this period, this
operation holds the level-8 lock of the table.

● The duration of this operation depends on the amount of data in the delta
table. You must enable the HStore clearing thread to ensure unnecessary data
in the HStore table is cleared in a timely manner.

Example:

SELECT hstore_full_merge('reason_select');

Data Warehouse Service
Hybrid Data Warehouse 4 Hybrid Data Warehouse Functions

Issue 07 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 23

5 Hybrid Data Warehouse GUC
Parameters

autovacuum

Parameter description: Specifies whether to start the automatic cleanup process
(autovacuum).

Type: SIGHUP

Value range: Boolean

● on indicates the database automatic cleanup process is enabled.

● off indicates that the database automatic cleanup process is disabled.

Default value: on

autovacuum_max_workers

Parameter description: Specifies the maximum number of autovacuum worker
threads that can run at the same time. The upper limit of this parameter is related
to the values of max_connections and job_queue_processes.

Type: SIGHUP

Value range: an integer

● The minimum value is 0, indicating that autovacuum is not automatically
performed.

● The theoretical maximum value is 262143, and the actual maximum value
dynamically changes. Formula: 262143 - max_inner_tool_connections -
max_connections - job_queue_processes - auxiliary threads - Number of
autovacuum launcher threads - 1. The number of auxiliary threads and the
number of autovacuum launcher threads are specified by two macros. Their
default values in the current version are 20 and 2, respectively.

Default value: 3

Data Warehouse Service
Hybrid Data Warehouse 5 Hybrid Data Warehouse GUC Parameters

Issue 07 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 24

autovacuum_max_workers_hstore
Parameter description: Specifies the maximum number of concurrent automatic
cleanup threads used for hstore tables in autovacuum_max_workers.

Type: SIGHUP

Value range: an integer

Default value: 0

NO TE

To use HStore tables, set the following parameters, or the HStore performance will
deteriorate severely. The recommended settings are as follows:

autovacuum_max_workers_hstore=3, autovacuum_max_workers=6, autovacuum=true

enable_hstore_lightupdate
Parameter description: Specifies whether to enable lightweight UPDATE for an
HStore table. (When an UPDATE operation is performed on an HStore table, the
system automatically determines whether lightweight UPDATE is required.)

Type: SIGHUP

Value range: Boolean

● on indicates that lightweight UPDATE is enabled for hstore tables.
● off indicates that lightweight UPDATE is disabled for hstore tables.

Default value: off

enable_hstore_merge_keepgtm
Parameter description: Specifies whether the MERGE in the autovacuum
operation on column-store and hstore tables occupies slots in the GTM.

Type: SIGHUP

Value range: Boolean

● true indicates that it occupies slots in the GTM.
● false indicates that it does not occupy slots in the GTM.

Default value: true

hstore_buffer_size
Parameter description: Specifies the number of HStore CU slots. The slots are
used to store the update chain of each CU, which significantly improves the
update and query efficiency.

To prevent excessive memory usage, the system calculates a slot value based on
the memory size, compares the slot value with the value of this parameter, and
uses the smaller value of the two.

Type: POSTMASTER

Data Warehouse Service
Hybrid Data Warehouse 5 Hybrid Data Warehouse GUC Parameters

Issue 07 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 25

Value range: an integer ranging from 100 to 10,000,000

Default value: 100,000

Data Warehouse Service
Hybrid Data Warehouse 5 Hybrid Data Warehouse GUC Parameters

Issue 07 (2024-11-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 26

	Contents
	1 Introduction to Hybrid Data Warehouse
	2 Support and Constraints
	3 Hybrid Data Warehouse Syntax
	3.1 CREATE TABLE
	3.2 INSERT
	3.3 DELETE
	3.4 UPDATE
	3.5 UPSERT
	3.6 MERGE INTO
	3.7 SELECT
	3.8 ALTER TABLE

	4 Hybrid Data Warehouse Functions
	5 Hybrid Data Warehouse GUC Parameters

